
How To Write a Linux Security 
Module That Makes Sense For You

Casey Schaufler

February 2016



Casey Schaufler

• Unix 32 bit port - 1979

• Smack Linux security module

• Security module stacking



Why Would You Write A Security Module?

• We already have terrific 
security modules

• I can do anything I want 
with SELinux

• Writing kernel code is 
hard



Because It’s Your Best Option

• Existing modules are showing 
their age

• There are things you can’t do 
with SELinux

• Right way to control kernel 
resources



Restrictive Controls

• Traditional checks are still done

• UID based checks

• Capability checks

• Can’t override a denial



Security Module Don’ts

• Duplicate an existing module

• Depend heavily on user space 
helpers

• Inflame Al Viro



The Most Important Principle

• Plagiarize! Let no one else's work 
evade your eyes. Remember why 
the good Lord made your eyes, 
so don't shade your eyes,
but plagiarize, plagiarize, 
plagiarize. Only be sure always 
to call it please "research".



Things You Need
To Know About

The components of a Linux Security Module



Hooks

• Security module data 
management

• Access checks

• Pick and choose as needed



Hook Return Values

• ENOMEM

• EACCES

• EPERM

• No memory available

• Policy denies access

• Privilege is required to do this
• cap_able()

• CAP_MAC_ACCESS

• CAP_MAC_ADMIN



Object Based Hooks

• Affiliated with kernel objects

• Access based on attributes 
attached to the object

• May be difficult for a human to 
identify



Path Based Hooks

• Associated with pathnames

• May not uniquely identify an 
object
• Symlinks

• Mount points

• Human friendly



Security Blobs

• Hang off kernel data structures

• Managed by the module

• Completely up to the needs of 
the module



The Blob, the Secid and the Secctx

• Blob contains whatever you like

• Secctx is a string describing it

• Secid is a 32 bit number
• One per secctx

• Never exported

• Volatile



Major Security Module

• Use security blobs

• You only get one

• Called last



Minor Security Module

• Requires no blobs

• Called after:
• Traditional controls

• Capabilities

• Called before any major module



Designing Your Security Module
You know, the one that makes sense to you.



What Do You Want To Protect?

• Objects

• Pathnames

• Processes

• Hunks of data

• Resources



What Do You Want To Protect it From?

• Users
• Malicious

• Stupid

• Applications
• Malicious

• Badly written

• Network access



How Do You Want To Protect It?

• Deny access

• Log the attempt

• Change some attributes

• Something clever



Maintaining Information

• Security Blobs
• cred->security

• file->f_security

• inode->i_security

• ipcperm->security

• key->security

• msg->security

• sock->sk_security

• superblock->s_security

• tun->security



Process Interfaces
Process Attributes



/proc/pid/attr

• security_getprocattr

• security_setprocattr

• Defined in procfs

• Don’t reuse entries



Object Attributes
Information About Things



Traditional Security Attributes

• User and group IDs

• Access modes

• File types

• File Sizes

• Locks

• Filesystem information

• Don’t overload attributes!



Extended Attributes

• Attached by filesystems

• Privilege required to change 
them

• As big as you like



Pathnames

What’s in a name? 
That which we call 
a rose by any 
other name would 
smell as sweet.

• struct path

• Not very convenient

• Not definitive
• Mount points

• Symlinks

• Hard links



Networking
You may not

want to go

there



Try netfilter First

• IPv4 and IPv6

• Packet filtering
• Stateless and statefull

• Address translation

• Port translation

• Extension APIs



Socket Operations

• Checks on many operations
• Bind, listen, connect

• Packet delivery

• SO_PEERSEC to pass security 
attributes



UNIX Domain Sockets

• Access to the file system object

• Access to both sockets

• Hooks for connect and send



Internet Domain Sockets

• Only one end of the operation

• Packet header available on 
receive

• Support for attribute passing 
using CIPSO



Audit Trail
Adding to the log



Define Your Audit Data

• include/linux/lsm_audit.h

• common_audit_data
• Under #ifdef in a union

• Your data is up to you
• Subject

• Object

• Operation



Format the Audit Record

• your_log_callback

• audit_log_format

• audit_lo_untrustedstring

• common_lsm_audit

Simon Cunningham

https://www.flickr.com/photos/lendingmemo/11747440176/sizes/c/


Security Module Interfaces
Why you want your very own pseudo-filesystem



Why Have Security Module Interfaces?

• Load or change access rules

• Read gathered statistics

• Module configuration

• Avoid adding syscalls or ioctls



Mechanics For sysfs

• sysfs_create_mount_point

• register_filesystem

• kern_mount



Security Module
Stacking

Today and In The Future



Stacking Minor Modules

• module_add_hooks in 
security_init

• After capability_add_hooks

• Before do_security_initcalls

Right Here!



Stacking Major Modules - Today

• One at a time

• Boot line
• security=module

• CONFIG_DEFAULT_SECURITY=“module”

• security/Kconfig



Stacking Major Modules – How To Cheat

struct task_security_struct {

u32 osid; /* SID …

…

u32 sockcreate_sid; /* fscr … 

struct task_module module_blob;

};

• There is only one cred->security

• Add your blob to the blob you 
want to stack with

• Let the other module alloc and 
free

• Other module stacked first



Module Stacking In The Future

• Still under development

• Several blob options

• Representation of secctx



Wrap Up
Get your questions ready



Have A Good Reason

• Do something useful

• It should be something the 
kernel can and should do

• Follow up with user space 
support and documentation



Don’t Reinvent The Wheel

• Generic has been done

• It’s the 21st century

• No one liked Bell & LaPadula
• Or SELinux …

• Or Smack …



Show Us Something New

• A model for Application 
Resources has not been done

• Sensor based controls could be 
fun

• Security doesn’t have to be dull



Thank You


